
Central Place Indexing: Optimal Location Representation for Digital Earth

Kevin M. Sahr Department of Computer Science Southern Oregon University

SOUTHERN TERRA COGNITA ABORATORY

The Situation

- Geospatial computing has achieved many impressive results
- But it now faces unprecedented challenges

Advent of "Digital Earth"

 exemplifies the challenges facing geospatial computing, combining in one platform:

"mother of all (geospatial) databases"

- simulation, interactive 3D visualization, & analysis of vast quantities of diverse distributed global geospatial "big data"
- integrates real-time location update and manipulation

The Key: Location Representation

- to implement this vision in totality a revolution in our fundamental approaches to geospatial computing is required
- at the core of all geospatial applications are data structures that represent location
 - even minor efficiency improvements in location representation can lead to substantial performance increases

Fundamental Location Representation Types

- digital earth systems must provide data structures for representing:
 - raster/pixels for
 - imagery
 - discrete simulation
 - "gridded" data analysis
 - vector/point locations
 - spatial databases/spatial indexes

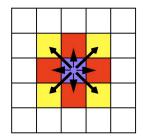
Traditional Raster Location Representation

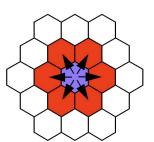
- raster of square pixels
- addressed using 2-tuple of integers

Traditional Image Processing Model

- traditional raster representation supports image processing based on a conceptual model of:
 - Input from square raster of sensors
 - ✦ stored internally as matrix of pixels
 - displayed one-to-one on a square raster of display pixels

Digital Earth Reality


- image processing in digital earth systems breaks this mold
 - processed satellite image pixels rarely correspond to individual sensors
 - must support whole-earth image sets
 - spherical topology
 - internal pixels mapped to virtual 3D surface for display


A Superior Alternative

- numerous researchers have proposed using hexagon-shaped pixels, arranged in a hexagonal raster
- the human eye uses a hexagonal arrangement of photoreceptors
- compared to square rasters, hexagon rasters
 - ♦ are 13% more efficient at sampling
 - ♦ 25% to 50% more efficient for common image processing algorithms

Discrete Simulation

- hexagonal grids also have numerous advantages over square grids for discrete simulation
 - ✦ superior angular resolution
 - discrete distance metric better approximates cartesian distance
 - display uniform unambiguous adjacency

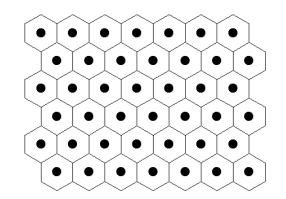
Traditional Vector Location Representation

- 3- or 2-tuples of floating point values
- attempt to mimic the real number coordinates used in pre-computer scientific analysis and 2D mapping

But...

- vectors of real numbers
 - ✦ are continuous and infinite
- tuples of floating point values
 - ♦ are discrete and finite

Problems


- the simplest operations (e.g., equality test) can result in profound semantic errors
- bounding the rounding error on individual operations can be difficult
 - on complex systems can be impossible

The Reality

- floating point values are no more "exact" than integer values
- given *n* bits, we can distinguish 2ⁿ unique values
 - ✦ all other points must be quantized to these
- all computer representations of location both raster and vector — are necessarily discrete

A Superior Alternative

- the human brain represents location using a hexagonal arrangement of neurons
- quantization to the points of a hexagonal lattice is optimal using multiple formulations
 - least average quantization error
 - covering problem
 - packing problem

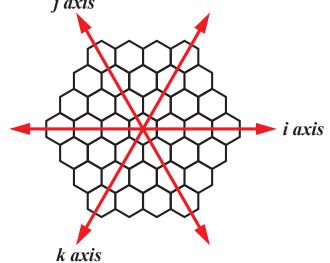
Traditional Spatial DBs

- traditional raster and vector representations are inefficient for many common spatial operations
- spatial DBs add a linear spatial index
 - correspond to buckets containing locations, providing
 - more efficient spatial queries
 - Coarse filter for specific algorithms

Traditional Spatial DBs

- underlying vector/raster representation retained for
 - final stage of many algorithms
 - arbitrary spatial operations
- form of spatial DBs based on traditional vector/raster representational forms
 - ✦ structured: square quad tree
 - semi-structured: rectangular buckets (e.g. R-tree)

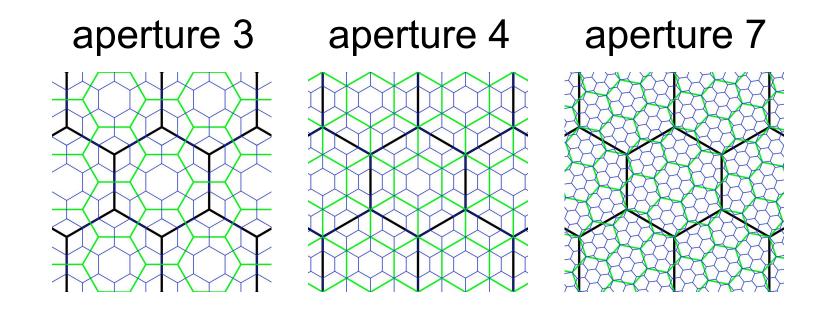
Spatial Queries


- traditional primary spatial query type: window/axes-aligned rectangle
- *but* primary query type in modern geospatial systems is proximity
 - recall that hexagonal discrete distance metric better approximates cartesian distance
 - hexagon buckets provide more efficient proximity coarse filter

The Task

- design a hierarchical integer index for hexagon lattices that can be used for:
 - multi-precision vector location
 - multi-resolution raster location
 - structured spatial index
- must be explicitly spherical
- Digital Earth Primary Spatial Index:
 - One Index to Rule Them All

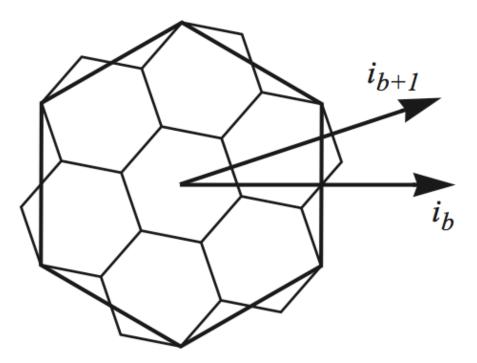
Hexagon Coordinate Systems


 single resolution hexagon grids have three natural axes spaced at 120° angles

Hexagonal Multi-Res

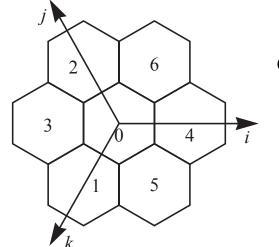
- regular multi-precision/resolution hexagon lattices can be created with an infinite number of apertures
 - aperture: ratio of cell areas between resolutions
- research has focused on the Central Place (Christaller, 1966) apertures 3, 4, and 7

Central Place Apertures

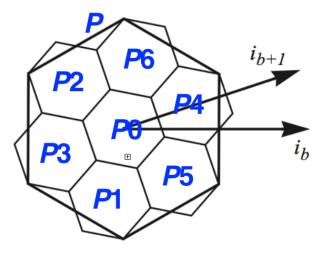


Prefix Codes

- hierarchical prefix codes have many advantages for hierarchical spatial indexes
 - each digit in index corresponds to a single precision in the representation
 - Provides locality preserving total ordering
 - implicitly encodes precision
 - Provides efficient generalization via truncation

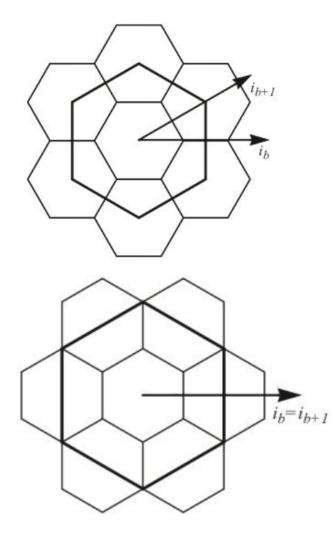

Aperture 7 Case

 note that each hexagon is naturally associated with 7 hexagons at the next finer resolution



GBT

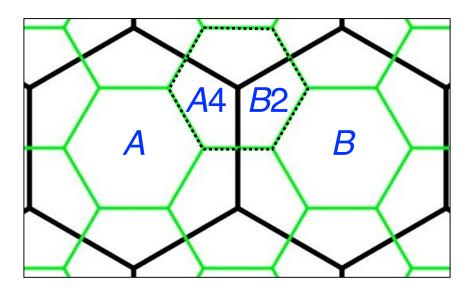
 Generalized Balanced Ternary (GBT) (Gibson & Lucas, 1982) is a hierarchical prefix code system for aperture 7 grids



- single digits correspond to each possible hexagonal direction
- each indexing child adds the appropriate digit to their parent's index

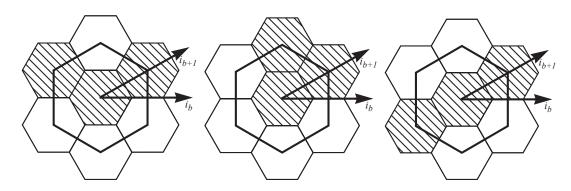
Apertures 3 and 4

 note that in apertures 3 and 4 each cell also naturally has 7 finer precision potential indexing children

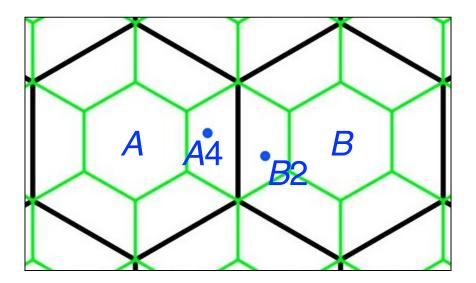

Central Place Indexing

- we can apply the GBT arrangement to the aperture 3 and 4 cases
- we call the result Central Place Indexing (CPI)
 - provides uniform indexing for all 3 apertures
 - allows for indexing mixed-aperture resolution sequences

Pixel/Bucket Indexing


 cells in aperture 3 and 4 resolutions can have multiple parents cells and therefore multiple valid CPI indexes

♦ aperture 3 example:

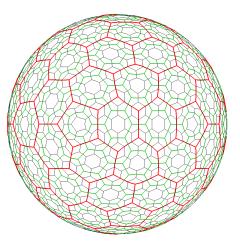

Pixel/Bucket Indexing

- if the cells represent pixels or DB buckets, then a single unique index must be chosen for each cell
 - a consistent choice of child assignment must be made
 - example aperture 3 solutions:

Vector Indexing

• in apertures 3 and 4 point quantization can be performed at each successive resolution

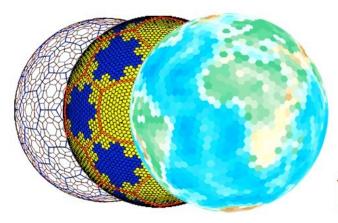
Vector Indexing


- thus aperture 3 and 4 grids effectively address cell sub-regions
 - provides true multi-precision point quantization
 - truncation and rounding are equivalent
 - indexes can be progressively transmitted

CPI Algorithms

- we have implemented planar CPI algorithms for
 - forward & inverse quantization
 - ✦ addition/translation
 - ✦ subtraction
 - metric distance
- implemented using efficient per-digit table lookups

The Sphere


 we can apply any CPI system to a spherical icosahedron to index a hexagonal Discrete Global Grid System (DGGS)

- note that cells centered on the icosahedral vertices are pentagons
 - we can apply CPI indexing to them by deleting one of the non-centroid indexing sub-sequences

Conclusions

- multi-resolution hexagonal DGGSs provide the best known basis for raster, vector, and spatial DB location representation for digital earth systems
- CPI provides a unified efficient hierarchical indexing for all types of location representation on hexagonal DGGSs

SOUTHERN TERRA COGNITA LABORATORY

www.discreteglobalgrids.org

35