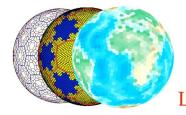
On the Optimal Representation of Vector Location using Fixed-Width Multi-Precision Quantizers

Kevin M. Sahr Department of Computer Science Southern Oregon University



SOUTHERN TERRA COGNITA ABORATORY

FWFP

 most common representation for vector location is as a tuple of floating point values with a fixed number of bits

Fixed-Width Floating Point (FWFP)

- but FWFP values are discrete and finite approximations to continuous and infinite real numbers
- is there a better representation for vector location?

Discrete Representation

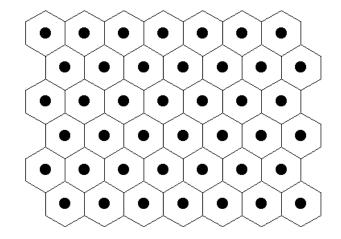
- given a fixed number of bits *n*, we can distinguish at most 2ⁿ unique values
 - all other points must be mapped to these values
 - form 2ⁿ equivalence classes with respect to location

Questions

- given *n* bits for a fixed-width representation of vector location
 - what is the most efficient arrangement of the 2ⁿ fixed points?
 - what properties of the real numbers do we want our representation to maintain?
 - Are there representations that can maintain those properties?

Efficient Quantization

- the points of a hexagonal lattice provide optimal quantization using multiple formulations
 - ✦ least average quantization error
 - covering problem
 - packing problem



Exact Representation

- the real numbers are capable of exact representation
 - representing values with infinite precision and zero location uncertainty
- example: north pole is at exactly 90° north latitude
 - adding more digits does not increase the precision of that representation

Exact Representation

 FWFP representations are incapable of exact representation (without metadata)

Single Precision

- FWFP representations encode quantization at a single precision
- example: quantize the real number 99.67628
 at whole unit precision: 100
 at 1/10 unit precision: 99.7
- truncating digits does not yield a valid coarser resolution quantization
 - values must be rounded
 - cannot be progressively transmitted

Balanced Ternary

- there are representations of real numbers that encode multi-precision quantization
- one is balanced ternary (Lalanne, 1840)
- radix-3 system using digits -1, 0, and 1
- truncation and rounding are equivalent
- can be progressively transmitted

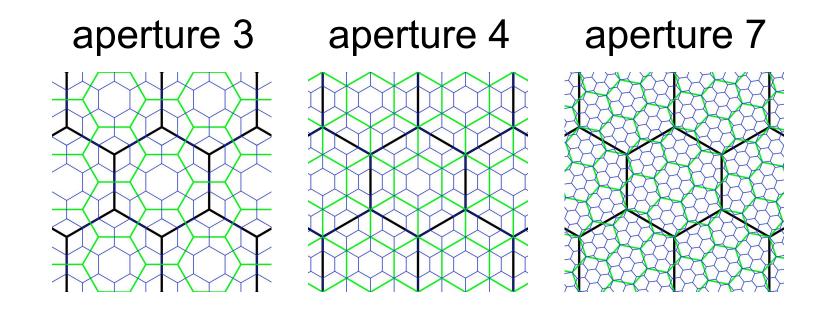
The Goal

- create a vector location representation that
 - uses explicitly discrete integer indexes
 - uses optimal hexagonal lattice points
 - capable of exact representation
 - capable of multi-precision quantization

Central Place Apertures

- multi-precision hexagon lattices can be created with an infinite number of apertures
 - aperture: ratio of cell areas between precisions
- research has focused on the Central Place (Christaller, 1966) apertures 3, 4, and 7

Central Place Apertures

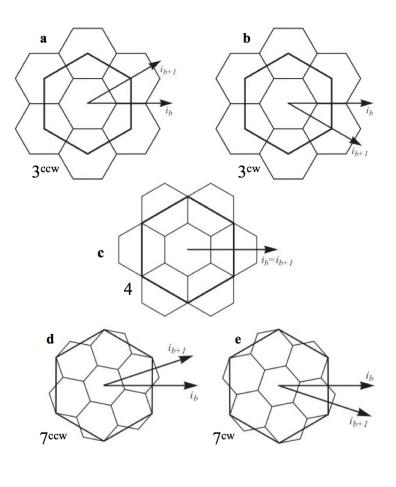


Prefix Codes

- hierarchical prefix codes have many advantages for hierarchical spatial indexes
 - each digit in index corresponds to a single precision in the representation
 - Provides locality preserving total ordering
 - implicitly encodes precision
 - Provides efficient generalization via truncation

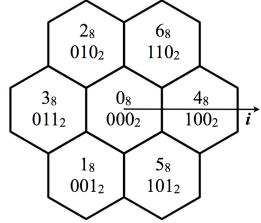
Central Place

 note that in central place apertures each cell naturally has 7 finer precision potential indexing children



GBT

- Generalized Balanced Ternary (GBT) (Gibson & Lucas, 1982) is an extension of 1D balanced ternary to the 2D aperture 7 case
- indexing children add the appropriate digit to their parent's index



CPI

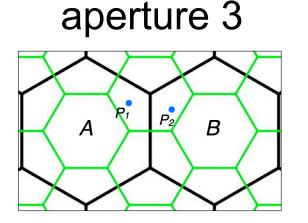
- we can apply this arrangement to the aperture 3 and 4 cases
- we call the result Central Place Indexing (CPI)
 - provides uniform indexing for all 3 apertures
 - allows for indexing mixed-aperture precision sequences

CPI Algorithms

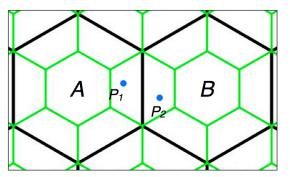
- we have implemented planar CPI algorithms for
 - forward & inverse quantization
 - addition/translation
 - subtraction
 - ✦ metric distance
- implemented using efficient per-digit table lookups

Multi-Precision Quant.

- apertures 3 and 4 CPI indexing encodes true multi-precision quantization
 - point quantization is performed at each successive precision



aperture 4

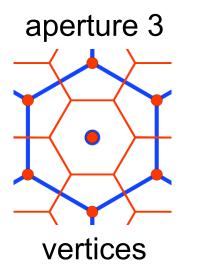


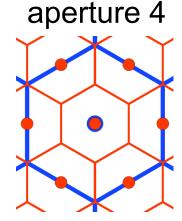
Exact Representation

- using 3 bits per digit, CPI children use digits 08 (0002) through 68 (1102)
- leaves digit 7₈ (111₂) for other purposes
- we can use this digit to indicate exact representation
 - Indicates that any further digits would be 0
 - provides infinite precision with finite representation

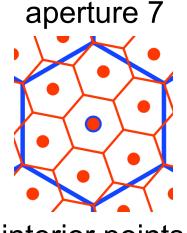
Exact Representation

- for all three apertures, the center point of a cell with index A is exactly described by A7
- depending on aperture, the cells A17, A27, ...,
 A67 would exactly describe the cell:





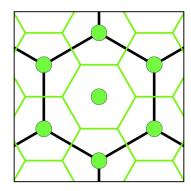
edge midpoints

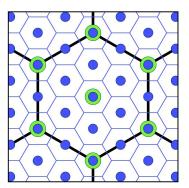


interior points

Self-Describing

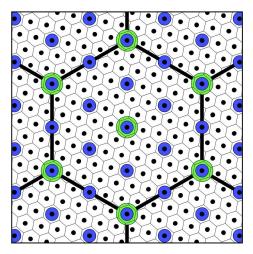
- by adding an aperture 3 and 4 precision to the finest precision of any CPI system we create a system that can exactly represent all cell center points, vertices, and edge midpoints at all system precisions
 - we call such a system self-describing





347-Suffix System

- adding an additional aperture 7 grid allows sub-frequency addressing of the internal cell regions
 - ♦ we call this a 347-suffix system

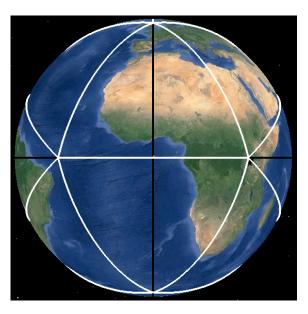


The Sphere

- we can extend any CPI system to the spherical icosahedron
- note that cells centered on the icosahedral vertices are pentagons
 - we can apply CPI indexing to them by deleting one of the non-centroid indexing sub-sequences
- we can now use what we've learned to design an optimal geospatial vector location system

Orientation

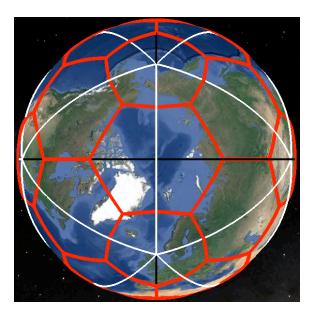
 we align the icosahedron symmetrically about the equator and prime meridian using its octahedral symmetry



First Precision

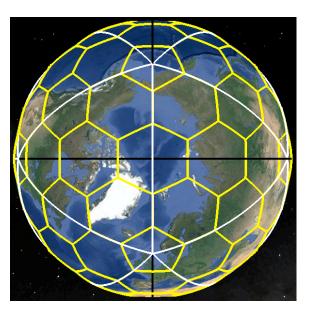
• we choose aperture 4 for the first precision

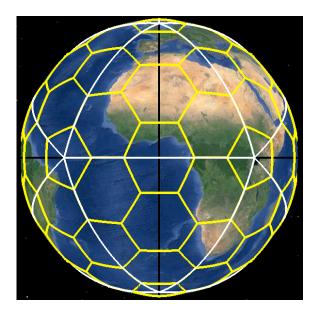
✦ centers cells on the octahedral vertices



Second Precision

- we choose aperture 3 for the second precision
 - centers cells on the icosahedron face midpoints





Base Tiles

- we choose these cells as the 122 base tiles for our CPI system
 - number them 0 (North Pole) to 121 (South Pole)

CPI43 Fixed Width System

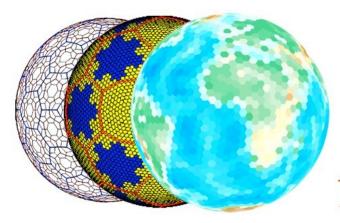
- we encode the base tile number in 7 bits
- we use the last bit in this byte to indicate whether or not the base tile value is exactly encoded
 - ♦ we call this a CPI43 Fixed Width System
 - example: 00000012 exactly represents the North Pole in all CPI43 Fixed Width Systems

Additional Precisions

- we can now add additional CPI precisions as appropriate for our application
- aperture 3 and 4 precisions provide multiprecision quantization
- aperture 7 precisions can be added first, to quickly zoom to the desired spatial resolution
- any system can be made self-describing by adding precisions to make it a 347-suffix system

Conclusions

- we have presented an optimal global grid that provides fixed width vector location representation that meets all of our desired properties
 - Integer hierarchical prefix code indexes
 - hexagonal fixed point arrangement
 - ♦ exact representation
 - multi-precision quantization



SOUTHERN TERRA COGNITA LABORATORY

www.discreteglobalgrids.org